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Nematostatics of triple lines

Alejandro D. Rey
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The Landau–de Gennes model for nematic liquid crystal bulk and interfaces has been extended to nematic
triple lines involving the intersection of two isotropic fluids and one nematic liquid crystalline phase. A
complete set of bulk, interface, and triple line force and torque balance equations has been formulated. The
triple line force and torque balance equations have linear, interfacial, and bulk contributions. The bulk contri-
butions appear as junction integrals, the surface contributions as junctions sums, and the line contributions as
gradients of stresses. Reduction of dimensionality from three to one dimensional creates the following effects:
~a! bulk terms enter interfacial balances as surface jumps and line balances as junction integrals, and~b!
surface terms enter linear balances as junction sums. Line stress and torque equations are derived using
classical liquid crystal models. The correspondence between line stress and line torque and their surface and
bulk analogs is established. The triple line force and torque balance equations are use to analyze the contact
angle in a nematic lens lying at the interface between two isotropic fluids, when the prefered surface orientation
is tangential. The effect of anisotropy and long range elasticity on triple line phases is established. Under weak
anchoring the contact angle is shown to be a function of the anchoring energy at the nematic-isotropic
interface, while under strong anchoring conditions the contact angle is a function of the Peach-Koehler force
that originates from bulk long range elasticity and acts on the triple line. The use of the complete set of balance
equations removes the classical inconsistency in force balances at a contact line by properly taking into account
long range~bulk gradient elasticity! and anisotropic~interfacial anchoring elasticity! effects.
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I. INTRODUCTION

The surface physics of nematic liquid crystals is curren
an active area of research@1–6# since many applications o
liquid crystalline materials involve multiphase system
where interfaces play significant roles. Interfacial orientat
phenomena and orientational transitions in fixed geomet
are well characterized experimentally@1–3# and theoretically
@4–7#. On the other hand, deforming soft nematic inte
phases are less well understood. Furthermore, wett
spreading, flotation, foaming, and fluid-liquid crystal di
placement are examples where contact lines are present@8,9#.
At present the understanding and characterization of con
lines involving nematic phases is starting to be develo
@10–12#. This paper presents a contribution to the formu
tion of models of systems displaying bulk, surface, and tri
line phases. In particular, we focus on a representative
tem of three bulk phases, three interfaces, and one triple
which arises when two isotropic fluid phases intersect a n
atic phase. A typical example is a nematic droplet or le
suspended at the interface between two isotropic fluids. G
eralizations to other triple lines, such as those arising at
intersection of solid isotropic and fluid nematic liquid crys
phases can be made following the procedure presented in
paper.

Fluid triple lines arising from the intersection of thre
isotropic fluids are described by the Neumann equation@8#,
which is a force balance of tangential forces acting along
three interfaces. The tangential forces at the triple line a
because the surface stress tensor is a tangential tensor
indicating only the presence of normal~tension! stresses
@8,9#. Since liquid crystal interfaces are anisotropic, the s
face stress tensor is not a tangential tensor field, indica
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that, in addition to normal stresses, there are bending stre
and distortion shear stresses@13#. Bending stresses at th
nematic triple line result in forces that are not tangential su
that force balances in any direction can be accomplis
@12#. When considering solid triple lines that arise from t
intersection of two fluid phases and a flat solid substrate
contact angle is given by the Young equation@8,9#. When
neglecting distortions in the solid substrate it is found tha
model based on tangential stresses is not able to bal
forces along the normal to the solid surface@9#. In the
present model we show that forces at a triple line may b
ance in all directions since stresses are not tangential ten

Force balances at a triple line, as in the Neumann
Young equations, are used to model isotropic systems@8,9#.
On the other hand, for anisotropic nematic liquid crystalli
materials force balances and torque balances are requ
Modeling of anisotropic surfaces using force and torque b
ances is very common in metallurgical@15,16#, thin mem-
brane, and film @17,18# and liquid crystalline systems
@13,19#. The need to use both force and torque balance
not restricted to dimensionality~three and two dimensional!,
and carries over to anisotropic triple lines. This was fi
recognized in@20#. Bulk, surface, and line force and torqu
balance equations under the coexistence of bulk, interf
and line phases give the complete set of equations in
presence of anisotropy. In addition to anisotropy, nema
liquid crystals display long range elasticity@14#. The bulk
and surface long range elasticity have been used to m
many observed phenomena~see for example,@1–7,14,21#!. It
is therefore possible that endowing a nematic triple line a
with long range elasticity will assist in providing furthe
mechanisms for wetting and wetting transitions@22,23#.
©2003 The American Physical Society06-1
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ALEJANDRO D. REY PHYSICAL REVIEW E67, 011706 ~2003!
The tensorial Landau–de Gennes force and torque
ance equations of nematic liquid crystals for surface p
nomena have been presented and used extensively~see, for
example,@3,13,24#!. On the other hand there are few app
cations to contact line problems. In@10# a two-dimensional
~2D! force balance equation for solid contact lines was f
mulated and used to model wetting processes in the abs
of line tension effects. In this work@10# the role of bulk long
range elasticity on the line force balance was establish
The vectorial Frank-Oseen force and torque balance e
tions of nematic liquid crystals have been formulated
solid contact lines in the absence of long range energy@20#.
The force and torque balance equations at cusps using
vectorial Frank-Oseen model have been formulated and u
to establish stability criteria@6#.

The objectives of this paper are as follows.~1! To present
a complete set of Landau–de Gennes equations for nem
liquid crystals for coexisting bulk, surface, and line phas
that include force and torque balances, using general
bulk, surface, and line energies that have homogeneous
long range contributions.~The presence of similar energie
in the three phases allows for a systematic formulation
stress and torque equations as well as providing a un
approach at developing the force and torque balance e
tions.! ~2! To establish the effect of anisotropy and lon
range energies on the forces and torques at the triple
phase.

The organization of this paper is as follows. Section
defines the geometry, the nematic order parameter, and
nematic elasticities, and derives the balance equations
constitutive equations for bulk, surface, and line stresses
torques. Section III develops the force and torque bala
equations in the Frenet-Serret frame of the triple line. S
tion IV presents the applications to a nematic lens betw
two isotropic fluids under weak and strong anchoring con
tions. Section V presents the conclusions.

II. BALANCE EQUATIONS

A. Geometry and order in nematic bulk, interface,
and triple line phases

In this paper we analyze the statics of a nematic tri
line, denoted byCtl, that arises at the intersection of tw
isotropic phases and a nematic phase. The geometry is sh
in Fig. 1. The nematic bulk region isR1 and the isotropic
bulk regions areR2 and R3. The total bulk regionR is the
union of the three bulk regions:R5R11R21R3. The
outer bounding surfaces of the three bulk region are, res
tively, S1, S2, andS3. The outward bounding surface ofR is
S and is the union of the three surfaces:S5S11S21S3.
The surface of discontinuity betweenR1 and R2 is S (1,2),
that betweenR3 andR1 is S (3,1), and that betweenR3 andR2

is S (2,3). The union of the three surfaces of discontinuity
S5S (1,2)1S (3,1)1S (2,3). The outer bounding edge ofS (1,2)

is C(1,2), that of S (3,1) is C(3,1), and that ofS (2,3) is C(2,3).
The intersection of the surface of discontinuityS and the
bounding surfacesS is C5C(1,2)1C(3,1)1C(2,3). The triple
line Ctl is the common intersection ofS (1,2), S (3,1), and
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S (2,3). The intersections of the triple lineCtl and S are two
end pointsEtl(s) andEtl(e), wheres indicates the start ande
the end. The total bounding surface for the nematic phas
Sn5S (1,2)1S (3,1)1S1. The unit vectorj( i , j ) is the normal to
the interface of discontinuityS ( i , j ) and is directed fromRj

into Ri . The outward unit normal toC( i , j ) is m( i , j ). The unit
vector normal to the triple lineCtl, tangent toS ( i , j ), and
directed away fromCtl is n( i , j ). The two unit tangents to the
triple line Ctl at Etl~s! and Etl~e! pointing away fromCtl are
a(s) anda(e). The outward unit normal toSi is y( i ). When no
ambiguity arises we drop superscripts.

The geometry of each interface (S ( i , j )) is characterized
by a mean surface curvatureH ( i , j ) given by @8,9#

FIG. 1. Schematic of the coexistence of three bulk, three in
face, and one triple line phases. The nematic bulk region isR1 and
the isotropic bulk regions areR2 andR3. The total bulk regionR is
the union of the three bulk regions:R5R11R21R3. The outer
bounding surfaces of the three bulk region are, respectively,S1, S2,
andS3. The outward bounding surface ofR is Sand is the union of
the three surfaces:S5S11S21S3. The surface of discontinuity
betweenR1 and R2 is S (1,2), betweenR3 and R1 is S (1,2), and
betweenR3 and R2 is S (3,2). The union of the three surfaces o
discontinuity isS5S (1,2)1S (3,1)1S (2,3). The outer bounding edge
of S (1,2) is C(1,2), the outer bounding edge ofS (3,1) is C(3,1), and of
S (2,3) is C(2,3). The intersection of the surface of discontinuityS
and the bounding surfacesS is C5C(1,2)1C(3,1)1C(2,3). The triple
line Ctl is the common intersection ofS (1,2), S (3,1), andS (2,3). The
intersections of the triple lineCtl and S are two end pointsEtl(s),
and Etl(e), where s indicates the start, ande the end. The total
bounding surface for the nematic phase isSn5S (1,2)1S (3,1)1S1.
The unit vectorj( i , j ) is the normal to the interface of discontinuit
S ( i , j ) and is directed fromRj into Ri . The outward unit normal to
C( i , j ) is m( i , j ). The unit vector normal to the triple lineCtl, tangent
to S ( i , j ), and directed away fromCtl is n( i , j ). The two unit tangents
to the triple lineCtl at Etl(s) andEtl(e) pointing away fromCtl are
a (s) anda (e). The outward unit normal toSi is y( i ). The orientation
of the triple line is given by the unit vectort. Rotation of a right-
handed screw in a clockwise direction advances the screw in
direction of t.
6-2
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H ~ i , j !52
1

2
“s•j~ i , j !5

1

2
I s
~ i , j ! :bs

~ i , j !52
1

2
I s
~ i , j ! :“sj

~ i , j !

5
1

2
~x1

~ i , j !1x2
~ i , j !!, ~1a!

bs
~ i , j !52“sj

~ i , j !5x1
~ i , j !e1

~ i , j !e1
~ i , j !1x2

~ i , j !e2
~ i , j !e2

~ i , j ! ,

~ i , j !5~1,2!,~3,1!,~2,3!, ~1b!

where for each interfaceS ( i , j )
“s5I s

( i , j )
•“ is the surface

gradient,I s
( i , j )5I2j ( i , j )j ( i , j ) is the 232 unit surface dyadic

for interface (i , j ), I is the 333 unit dyadic,b s
( i , j ) is the

232 symmetric surface curvature dyadic, and$xm
( i , j )% and

$em
( i , j )%, m51,2 are the eigenvalues and eigenvectors

b s
( i , j ) . The divergence ofI s

( i , j ) is a normal vector:“s•I s
( i , j )

52H ( i , j )j( i , j ). The symmetric surface curvature dyad
b s

( i , j ) is given in terms of mutually perpendicular unit ve
tors (e1

( i , j ) ,e2
( i , j )) in the directions of the principal axes o

curvature. The principal curvatures (x1
( i , j ) ,x2

( i , j )) of the sur-

face are defined byb s
( i , j )

•em
( i , j )5xm

( i , j )em
( i , j ) , i 51,2. Finally,

another common way to express the principal curvatu
(x1

( i , j ) ,x2
( i , j )) is in terms of the principal radii of curvatur

(r m
( i , j )), as follows: xm

( i , j )521/r m
( i , j ) , m51,2.

To describe the geometry of the triple lineCtl we use the
Frenet-Serret formulas. The principal frame is~t,p,b!, where
t5p3b is the unit tangent,p5b3t is the unit principal
normal, andb5t is the binormal unit vector. Representin
the contact line byr5r (s), the curvaturek and the torsiont
are

d

dsF t
p
b
G5F 0 ¸ 0

2¸ 0 t

0 2t 0
G F t

p
b
G . ~2!

The unit line dyad isI ,5tt . The line gradient operator i
given by“,(")5I ,•“("). The divergence of the unit dyad i
“,•I ,5¸p. The linear curvature dyadicb, is given by

b,52“,p5¸tt ~3!

and the line curvature by

¸52“,•p5I , :b,52I , :“,p. ~4!

In the bulk, at the two nematic-isotropic interfaces, and
the triple line the nematic ordering is defined by the symm
ric traceless tensor order parameter@8# Q5Q(xp), wherexp
is the position vector. The tensor order parameterQ can be
expressed as

Q5r 1nn1r 2mm1r 3I . ~5!

The orthogonal eigenvectors ofQ appearing in Eq.~2! are
known as the directorn and the biaxial directorm. The re-
strictions onQ are Q:I50 and Q5QT, where the super-
01170
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script T denotes the transpose. The first restriction givesr 1
1r 213r 350. Physically significant expressions for the
coefficients are

r 15s11
s2

3
, r 25

2s2

3
r 352~s11s2!/3, ~6!

wheres1 ands2 are the uniaxial scalar order parameter a
biaxial scalar order parameter, respectively. For isotro
statess15s250 (r 15r 25r 350), while for uniaxial states
s250 (r 153r 3).

B. Bulk, interface, and line nematic elasticity

In this section the bulk, surface, and linear free energ
are presented and discussed in reference to interfacial
triple line phenomena. For simplicity and when no ambigu
arises we drop the~i, j! superscripts to refer to theS ( i , j )

interface.
Generalizing the Landau–de Gennes theory, the total

energy of the nematic liquid crystal in the regionR1,
bounded bySn, and the triple lineCtl is given by

F5E
R1

f b~Q,“Q!dV1E
Sn

f s~Q,“sQ,j!dA

1E
ctl

f ,~Q,“,Q,t!d,. ~7!

In this paper we assume that the bulk, interface, and line
energy densities in the Landau–de Gennes model have
mogeneous and gradient contributions:

f b~Q,“Q!5 f bh~Q!1 f bg~“Q!,

f s~Q,“sQ,j!5 f sh~Q,j!1 f sg~“sQ!, ~8a!

f ,~Q,“Q,t!5 f ,h~Q,t!1 f ,g~“,Q!. ~8b!

The Frank elastic gradient free energy densityf bg , the bulk
homogeneous free energy densityf bh , the interfacial homo-
geneous free energy densityf sh , and the interfacial gradien
free energy densityf sg are given by@3,4,26#

f bh~Q!5a1 tr Q22a2 tr Q31a3~ tr Q2!2, ~9a!

f bg~“Q!5
L1

2
tr“Q21

L2

2
~“•Q!•~“•Q!T, ~9b!

f sh~Q,j!5 f s iso1 f s an;

f s an5z11j•Q•j1z20Q:Q1z21Q•j•j•Q

1z22~j•Q•j!2, ~9c!

f sg5
L3

2
j•~Q:“sQ2Q•“s•Q!, ~9d!

where“ is the gradient operator,$Li%, i 51,2, are the Frank
elastic constants~energy/length!, $ai%, i 51,2,3, are the Lan-
dau coefficients~energy/volume!, f s iso is the isotropic inter-
6-3
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facial tension,f s an is the interfacial anchoring energy,$zii %
are the anchoring coefficients~energy/area!, andj is the unit
normal.

The line energies for the generalized Landau–de Gen
model can be written down using the same standard pr
dures as for the bulk and surface contributions. The hom
geneous line free energy density is

f ,h~Q,t!5 f , iso1 f , an;

f , an5c11t•Q•t1c20Q:Q1c21~Q•t!•~Q•t!

1c22~ t•Q•t!2, ~10!

where f , iso is the isotropic contribution andf , an is the line
anchoring energy density. The line gradient free energy d
sity f ,g is

f ,g5Ai jk
1
“,kQi j 1Ai jklmn

2
“,kQi j“,nQlm . ~11!

Using the restrictionsAi jk
1 5Ajik

1 andAi jk
1 5Ai j 0

1 I ,0k , then

Ai jk
1
“,kQi j 5~,1t i t j tk1,2Qi j tk!“,kQi j ~12!

where (,1 ,,2) are elastic constants. To find the second or
tensor coefficient A2 we use Ai jklmn

2 5Almni jk
2 5Ajiklmn

2

5Ai jkmln
2 5Ai jklmn

2 5Ai j 0lmn
2 I ,0k5Ai jklm0

2 I ,0k , and when us-
ing the one-constant approximation its contribution
Ai jklmn

2
“,kQi j“,nQlm5,3“,kQi j“,kQi j /2, where,3.0 is

an elastic coefficient. Thus to lowest order the line energ

f ,g5,1~“,•Q!•t1,2

]Q

]s
:Q1

,3

2
“,Q:~“,Q!T ~13!

were we usedtt :(“,Q)5“,•Q, and (t•“,)Q5]Q/]s.
It will be shown that the generalized line energy dens
results in a natural and consistent system of balance e
tions. In addition, the line stress and torque constitut
equations will be shown to have exact analogs to the co
sponding bulk and surface terms.

C. Balance equations for nematic bulk, interface,
and triple line phases

To write down the force balance equations we introdu
the following stress tensors: the bulk stress tensorTb

( i )

~energy/volume!, the interface stress tensorTs
( i , j ) ~energy/

area!, and the triple line stress tensorT, ~energy/length!. The
dimensionalities of the stress tensors areTb

( i ) , 333, ts
( i , j ) ,

233, andT, , 133. We recall that phases 2 and 3 are is
tropic and incapable of sustaining torques. To write down
torque balance equations we introduce the dualsTbx

( l )

52«:Tb
( l ) for the nematic bulk phase,Tsx

( i , j )52«:Ts
( i , j ) for

the two nematic interfaces, andT,x52«:T, for the triple
line. These dual vectors contain the asymmetric informat
of the stress tensors. In addition we have to take into acco
the following couple stress tensors: the nematic bulk cou
stress tensorCb

(1) ~energy/area!, the interface couple stres
tensorCs

( i , j ) ~energy/length!, and the triple line couple stres
tensorC, ~energy!. The dimensionalities of the couple stre
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tensors areCb
( l ) , 333, Cs

( i , j ) , 233, andC, , 133. Due to
their dimensionality these tensors obey

Ts
~ i , j !5I s•Ts

~ i , j ! , ~14a!

T,5I ,•T, , ~14b!

Cs
~ i , j !5I s•Cs

~ i , j ! , ~14c!

C,5I ,•C, . ~14d!

In addition, we also make use of the following junction i
tegrals:

R
jun

~k•Tb!d,5 lim
d→0

(
i
E

Dd
~ i !

~k•Tb
~ i !!d,, ~15a!

R
jun

~k•Cb!d,5 lim
d→0

E
Dd

~ i !
~k•Cb

~ l !!d,, ~15b!

whereDd
( i ) is the arc of a circle of radiusd lying on phase~i!;

the center of the circle is the triple lineCtl ~see Fig. 2!. Since
the isotropic phases do not support torques,Cb

(2)5Cb
(3)50,

and hence these couples are excluded from Eq.~15b!. Bulk
long range effects at the triple line vanish when

R
jun

~k•Tb!d,50, ~16a!

R
jun

~k•Cb!d,50, ~16b!

which arises wheneverTb'r 2l, Cb'r 2l, l<1, or when
k•Tb50, k•Cb50. Junction sums involving interfacia
stress and interfacial couples at the contact line are defi
by

FIG. 2. Schematic of a circular path of radiusd around the triple
line Ctl. The outward unit normal isk. Calculation of junction
integrals to compute long range bulk forces involves integrat
aroundCcl.
6-4
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(
jun

n•Ts5 lim
d→0

(
i , j

~n~ i , j !
•Ts

~ i , j !!ucd
~ i , j !

5n~1,2!
•Ts

~1,2!1n~3,1!
•Ts

~3,1!1n~2,3!
•Ts

~2,3!uCtl,

~17a!

(
jun

n•Cs5 lim
d→0

(
i , j

~n~ i , j !
•Cs

~ i , j !!ued
~ i , j !

5n~1,2!
•Cs

~1,2!1n~3,1!
•Cs

~3,1!uCtl, ~17b!

whereed
( i , j ) are the three intersections of the surface of d

continuitiesS ( i , j ) and the circleDd centered on the triple line
Ctl. Jumps in the bulk stresses@j•Tb# and couple stresse
across interfaces are denoted as

@j•Tb#5j~ i , j !
•@Tb

~ i !2Tb
~ j !#, ~ i , j !5~1,2!,~3,1!,~2,3!,

~18a!

@j•Cb#5j~ i , j !
•@Cb

~ i !2Cb
~ i !#, ~ i , j !5~1,2!,~3,1!,

~18b!

Cb
~2!5Cb

~3!50. ~18c!

Lastly, we define the bulk@14#, interface @13#, and line
torque vectors as follows:

Gb5Tbx1“•Cb , ~19a!

Gs5Tsx1“•Cs , ~19b!

G,5T,x1“•C, . ~19c!

The force balance on the total volume of the systemR is
@15#

E
S
~n•Tb!dA1E

C
m•Tsd,1a•T,uEtl~s!1a•T,uEtl~e!50.

~20!

Using the divergence theorem in the presence of a surfac
discontinuity and a triple line, the surface integral becom
@27#
01170
-

of
s

E
S
y•TbdA5E

R
“•TbdV1E

S
@j•Tb#dA

1E
Cil S R

jun
~k•Tb!d, D d,. ~21!

Using the surface divergence theorem the surface stress
becomes@9#

R
C

m•Tsd,5E
S
“s•TsdA1E

CtlS (jun
n•TsDd,. ~22!

Using the line divergence theorem the triple line contributi
gives @8#

a•T,uEtl~s!1a•T,uEtl~e!5E
Ctl
“,•T,d,. ~23!

Collecting the bulk, interface, and line terms yields the f
lowing integral force balances:

E
R
“•TbdV50, ~24a!

E
S
~“s•Ts1@j•Tb# !dA50, ~24b!

E
CtlS“,•T,1(

jun
n•Ts1 R

jun
~k•Tb!d, D d,50,

~24c!

which are satisfied when

“•Tb
~ i !50, i 51,2,3, ~25a!

“s•Ts
~ i , j !1@k•Tb#50, ~ i , j !5~1,2!,~3,1!,~2,3!,

~25b!

“,•T,1(
jun

n•Ts1 R
jun

~k•Tb!d,50 on Ctl.

~25c!

Thus the complete force balance at the triple line has li
interface, and bulk contributions:
~26!

Bulk, interface, and line long range effects enter in each corresponding term.
In the absence of line energy and long range energy effects the force balance equation~26! simplifies to the well-known

classical Neumann equation@8,9#
6-5
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(
jun

n•Ts5 lim
d→0

(
i , j

~n~ i , j !
•Ts

~ i , j !!ued
~ i , j !

5n~1,2!
•Ts

~1,2!1n~3,1!
•Ts

~3,1!1n~2,3!
•Ts

~2,3!uCtl

50. ~27!

The torque balance on the nematic regionR1 is

E
S1

r3~n•Tb!dA1E
C123

~r3m•Ts!d,1r

3$a•T,uEtl~s!1a•T,uEtl~e!%1E
S1

~n•Cb!dA

1E
C123

m•Csd,1$a•C,uEtl~s!1a•C,uEtl~e!%50,

~28!

where C1235C(1,2)1C(3,1). Next we use the bulk, surface
and line divergence theorem to evaluate the six terms in
der of appearence in Eq.~28!. Using the divergence theorem
on the bulk stress term yields

E
S1

r3~n•Tb!dA5E
R1
“•~r3Tb!dV1E

S123
r3@k•Tb#dA

1E
CtlS R

jun
r3~k•Tb!d, D d,. ~29!

The first term on the right hand side of Eq.~29! is

“•~r3Tb!5r3~“•Tb!1Tbx51Tbx , ~30!

where the second equality follows because“•Tb50. Re-
placing Eq.~30! into Eq. ~29! gives

E
S2

r3~n•Tb!dA5E
R2

TbxdV1E
S123

r3@k•Tb#dA

1E
CtlS R

jun
r3~k•Tb!d, D d,50

~31!

whereS1235S (12)1S (31). Similarly, using the identity

“•~r3Ts!5r3~“•Ts!1Tsx52r3@k•Tb#1Tsx ,
~32!

the application of the surface divergence theorem gives

R
C123

r3m•Tsd,5E
S123

~2r3@k•Tb#1Tsx!dA

1E
Ctl

r3S (
jun

n•TsDd,. ~33!

Using
01170
r-

“•~r3T,!5r3~“•T,!1T,x

52r3S (
jun

n•ts1 R
jun

~k•Tb!d, D 1T,x

~34!

and the line divergence theorem, the torque from the lin
stress becomes

r3$x•T,uEtl~s!1a•T,uEtl~c!%

5E
Ctl
“,•~r3T,!d,

5E
CtlH 2r3S (

jun
n•Ts1 R

jun
~k•Tb!d, D 1T,xJ d,.

~35!

We now proceed with the bulk, surface, and line cou
stresses, and obtain

E
S2

n•CbdA5E
R2
“•CbdV1E

S123
@j•Cb#dA

1E
CtlS R

jun
~k•Cb!d, D d,, ~36a!

R
C123

m•Csd,5E
S123

“s•CsdA1E
CtlS (jun

n•CsDd,,

~36b!

a•C,uEtl~s!1a•C,uEtl~e!5E
Ctl
“,•C,d,. ~36c!

Collecting terms we find the bulk, interface, and line b
ances for the nematic phase:

E
R1

$Tbx1“•Cb%dV50, ~37a!

E
S123

$Tsx1“s•Cs1@j•Cb#%dA50, ~37b!

E
CtlH T,x1“,•C,1S (

jun
n•CsD 1 R

jun
~k•Cb!d,J d,50.

~37c!

Thus the differential torque balances on the nematic bu
interfaces, and line phases are

Tbx
~1!1“•Cb

~1!50, ~38a!

Tsx
~ i , j !1“s•Cs

~ i , j !1@j•Cb#50, ~ i , j !5~1,2!,~3,1!,
~38b!

T,x1“,•C,1S (
jun

n•CsD 1 R
jun

~k•Cb!d,50, on Ctl.

~38c!
6-6
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“In terms of torque vectors the balance equations read

Gb
~1!50 ~39a!

Gs
~ i , j !1@j•Cb#50, ~ i , j !5~1,2!,~3,1!, ~39b!

G,1S (
jun

n•CsD 1 R
jun

~k•Cb!d,50. ~39c!

The torque balance equation at the triple line has the follo
ing line, surface, and bulk contributions:

~40!

Bulk, interface, and line long range effects enter in ea
corresponding term. In the absence of line energy and l
range bulk contributions the torque balance equation redu
to the analog of the Neumann force balance equation:

(
jun

n•Cs50. ~41!

D. Constitutive equations for bulk, surface, and line stresses,
couple stresses, and torques

The force and torque balance equations at triple lines
quire constitutive equations forTb , Ts , T, , Cb , Cs , C, ,
Gb , Gs , andG,, in their corresponding isotropic and nema
bulk, interface, and line phases. The bulk stresses and i
facial stresses for the isotropic fluids are

Tb
~ i !52p~ i !I , i 52,3, ~42a!

Ts
~2,3!5 f sh

~2,3!I s , ~42b!

wherep( i ) is the pressure andf sh
(2,3) is the interfacial tension

The constitutive equations for bulk and interfacial stres
and torques in the Landau–de Gennes model involving
nematic phase have been presented previously~see, for ex-
ample,@3,10,13#!. The constitutive equations are as follow

(a) Bulk stress tensor, bulk couple stress tensor, and b
torque vector

Tb
~1!52~p~1!2 f b!I2

] f b

]“Q
: ~“•Q!T, ~43a!

Cb
~1!5H F ] f b

]“Q
1S ] f b

]“QD TG•QJ :«, ~43b!

Cb0k5S ] f

]“0Qil
1S ] f

]“0Qli
D TDQl j « j ik , ~43c!

Gb
~1!5tbx

~1!1“•Cb
~1!5«:S ] f b

]“Q
:~“•Q!TD

1“•XH F ] f b

]“Q
1S ] f b

]“QD TG•QJ :«C ~43d!
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where (AT) i jk5A ik j @13#.
(b) Surface stress tensor, surface couple stress tensor,

surface torque vector
For the Eqs.~13! and~12! nematic interfaces, the surfac

stress tensor is@13#

Ts5Tsn1Tsd1Tsb ~44!

where the normalTsn , distortionTsd , and bendingTsb com-
ponents are

Tsn~Q,j~ i , j !,“sQ!5 f s
~ i , j !I s , ~ i , j !5~1,2!,~3,1!,

~45a!

Tsd
~ i , j !~Q,j~ i , j !,“sQ!52

] f s
~ i , j !

]“sQ
:~“sQ!T,

~ i , j !5~1,2!,~3,1! ~45b!

Tsb
~ i , j !~Q,j~ i , j !,“sQ!52I s .

] f s
~ i , j !

]j~ i , j ! j~ i , j !,

~ i , j !5~1,2!,~3,1! ~45c!

Cs
~ i , j !5H F ] f s

~ i , j !

]“sQ
1S ] f s

~ i , j !

]“sQ
D TG•QJ :«, ~ i , j !5~1,2!,~3,1!,

~45d!

Gs
~ i , j !5tsx

~ i , j !1“•Cs
~ i , j !

5«:F I s•S ] f s
~ i , j !

]j~ i , j ! j~ i , j !D 1
] f s

~ i , j !

]“sQ
:~“sQ!TG

1“s•XH F ] f s
~ i , j !

]“sQ
1S ] f s

~ i , j !

]“sQ
D TG•QJ :«C,

~ i , j !5~1,2!,~3,1!. ~45e!

(c) Line stress tensor, line couple stress tensor, and
torque vector

In this section we present the derivation of line stre
tensor, line couple stress tensor, and line torque. With
adopted generalized line free energyf ,5 f ,(Q,“,Q,t), we
find that the line stress tensor contains the following norm
T,n , distortionT,d , and bendingT,b components:

T,5T,n1T,d1T,b . ~46!

If the line energy is independent of“,Q @ f ,5 f ,(Q,t)# then
there are no distortion stresses. If the line energy has
anchoring contribution then there are no bending stres
Here we wish to treat the most general and admissible c
6-7



n

ck

m

n
to

r

ss

ALEJANDRO D. REY PHYSICAL REVIEW E67, 011706 ~2003!
The normal stress components, equivalent to pressure iTb
and surface tension inTs , account for the line tension@8#:

T ln51 f ,I ,, . ~47!

The distortion stress components, equivalent to bulk Eri
sen stress@13#, are found from a variation of“,Q at con-
stantQ and t:

dF,5E
Ctl

S ] f ,

]“,QD ]d~“,Q!Td,5E
Ctl

T,d :~“,u!Td,

5E
Ctl

~ I ,•T,d!:~“,u!Td,5E
Ctl

~T,d•I ,!:~“,u!Td,,

~48!

whereu is the displacement, which displaces a point fro
positionr to r 8: r 85r1u. SinceQ8(r 8,t8)5Q(r ,t8), dif-
ferentiation with respect tor 8 at constantt8 gives

d~“,Q!T52~“,Q!T
•~“,u!T ~49!

and the corresponding distortion stress is

T,d52
] f ,

]~“,Q!
:~“,Q!T5I ,•S 2

] f ,

]~“,Q!
:~“,Q!TD

5S 2
] f ,

]~“,Q!
:~“,Q!TD •I , . ~50!

The distortion stress is a normal stress,T,d5(I , :T,d)I , ,
and accounts for tension due to order parameter gradie
The bending contribution is found from a variation due
small changes in the unit tangent vectort:

dF,5E
Ctl

S ] f ,

]t D •dt d,5E
Ctl

T,b :~“,u!Td,

5E
Ctl

~ I ,•T,b!:~“,u!Td,. ~51!

Next we present the nontrivial derivation ofdt. To compute
dt we introduce a small displacementu that movesr to r 8:
r 85r1u. The differentialdr 8 is

dr 85dr1du. ~52!

Using the definitions of arclengthsds825dr 8•dr 8 and
ds25dr•dr , the expression for differential arclengthsds8 is

ds825ds212dr•du, ~53a!

ds85dsS 11
dr

ds
•

du

dsD , ~53b!

e5
ds82ds

ds
5

dr

ds
•

du

ds
5t•

du

ds
, ~53c!

where the symbole is known as the extension. Since
01170
-

ts.

du

ds
5S ]u

dr D
T

•S dr

dsD5~“u!T
•t5t•~“,u!, ~54!

the extensione simplifies to

e5
ds82ds

ds
5

ds8

ds
215tt :~“,u!, ~55!

from which we can obtain the following equation fo
ds/ds8:

ds

ds8
5

1

11e
512tt :~“u!512tt :~“,u!. ~56!

Differentiating r 85r1u with respect tos8 we find the rela-
tion betweent and t8:

dr 8
ds8

[t85
dr

ds

ds

ds8
1

du

ds
5t@12tt :~“,u!#1t•“,u

5t1~ I1tt !t•~“,u!. ~57!

Thus the small change in the tangent vectort and the change
in line energy due to displacementu are given by

dt5t82t5~ I2tt !t•~“,u!, ~58a!

dF,5E
Ctl

S ] f ,

]t D •dt d,5E
Ctl

T,b :~“,u!Td,

5E
Ctl

~ I ,•T,b!:~“,u!Td,. ~58b!

From this last result we find that the line bending stre
tensor is

T,b5t~ I2tt !•
] f ,

]t
5t~pp1bb!•

] f ,

]t
. ~59!

In the principal line frame~t,p,b! the bending stressT,b has
two components:

T,b5S p•
] f ,

]t D tp1S b•
] f ,

]t D tb. ~60!

The bending stress takes its name because it only has~tp!
and ~tb! components. Collecting results, the total 133 line
stress tensor is given by

T,5 f ,I s2
] f ,

]~“,Q!
:~“,Q!T1S p•

] f ,

]t D tp1S b•
] f ,

]t D tb,

~61!

which in component form is

T,b5T,b
tt tt1T,b

tp tp1T,b
tb tb, ~62a!
6-8
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T,b
tt 5 f ,2tt :

] f ,

]~“,Q!
:~“,Q!T, T,b

tp 5p•
] f ,

]t
,

T,b
tb 5b•

] f ,

]t
. ~62b!

The derivation of the line couple stress tensor is ana
gous to those of its bulk and surface counterparts and
expression has the same form as theirs:

C,5H F ] f ,

]“,Q
1S ] f ,

]“,QD T132G•QJ :«. ~63!

In the principal line frame the line couple stress tensorC,

becomes

C,5C,
tttt1C,

tptp1C,
tbtb, C,

tt5tt :C, ,

C,
tp5pt:C, , C,

tb5bt:C, . ~64!

Next we compute the line torqueG, . To derive the dual of
the line stress tensorT,x we use its formal definition and ge

T,x52«:T,5T,bx5S p•
] f ,

]t Db2S b•
] f ,

]t Dp. ~65!

Thus the line torque vectorG, is given by

G,5S p•
] f ,

]t Db2S b•
] f ,

dt Dp1“,•~C,
tttt1C,

tptp1C,
tbtb!.

~66!

Using the Frenet-Serret formulas the line torque simplifies

G,5S ]C,
tt

]s
2kC,

tpD t1S 2b•
] f ,

]t
1

]C,
tp

]s
1kC,

tt2tC,
tbDp

1S p•
] f ,

]t
1

]C,
tb

]s
1tC,

tpDb, ~67!

where the contributions of the line anchoring and gradi
energies are made clear.

III. BALANCE EQUATIONS FOR NEMATIC
TRIPLE LINE PHASES

More tractable expressions of the force and torque b
ance equations are found by projecting them along the p
cipal ~t,b,p! frame. Projecting the line force balance alo
the principal line frame~t,p,b!, we obtain

S ]T,
tt

]s
2kT,

tpD 1t•S (
jun

n•TsD 1t•S R
jun

~k•Tb!d, D 50,

~68a!

S ]T,
tp

]s
1¸T,

tt2tT,
tbD 1p•S (

jun
n•TsD 1p•S R

jun
~k•Tb!d, D

50, ~68b!
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S ]T,
tb

]s
1tT,

tbD 1b•S (
jun

n•TsD 1p•S R
jun

~k•Tb!d, D 50,

~68c!

Likewise the components of the line torque balance eq
tion are

S ]C,
tt

]s
1kC,

tpD 1b•S (
jun

n•CsD 1t•S R
jun

~k•Cb!d, D 50,

~69a!

S 2b•
] f ,

]t
1

]C,
tp

]s
1¸C,

tt2tC,
tbD 1p•S (

jun
n•CsD

1p•S R
jun

~k•Cb!d, D 50, ~69b!

S 2p•
] f ,

]t
1

]C,
tb

]s
1tC,

tpD 1b•S (
jun

n•CsD
1b•S R

jun
~k•Cb!d, D 50. ~69c!

A number of limiting cases worth enumerating arise wh
certain energies are negligible, and when certain geome
conditions prevail. Below we use the term ‘‘isotropic e
ergy’’ to denote negligible anchoring and gradient energy

(a) Isotropic line energy

] f ,h

]s
1t•S (

jun
n•TsD 1t•S R

jun
~k•Tb!d, D 50, ~70a!

~ f ,hk!1p•S (
jun

n•TsD 1p•S R
jun

~k•Tb!d, D 50,

~70b!

b•S (
jun

n•TsD 1b•S R
jun

~k•Tb!d, D 50, ~70c!

t•S (
jun

n•CsD 1t•S R
jun

~k•Tb!d, D 50, ~70d!

p•S (
jun

n•CsD 1p•S R
jun

~k•Cb!d, D 50, ~70e!

b•S (
jun

n•CsD 1b•S R
jun

~k•Cb!d, D 50. ~70f!

In this case all balances at the triple line involve surface a
bulk components.

(b) Isotropic line and interfacial energies

] f ,h

]s
1t•S R

jun
~k•Tb!d, D 50, ~71a!
6-9
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~¸¸ f ,h!1p•S n~1,2! f sh
~1,2!1n~3,1! f sh

~3,1!1n~2,3! f sh
~2,3!uCtl

1 R
jun

~k•Tb!d, D 50, ~71b!

b•S n~1,2! f sh
~1,2!1n~3,1! f sh

~3,1!1n~2,3! f sh
~2,3!uCtl1 R

jun
~k•Tb!d, D

50, ~71c!

R
jun

~k•Cb!d,50. ~71d!

Equation~71a! is the lineal Marangoni force balance and E
~71d! is the vanishing bulk couple condition. No torques a
on the triple line. Bulk contributions arise on all balances

(b) Rectilinear triple lines with constant isotropic line an
interfacial energies. Let ~t,p,b! represent an orthogona
frame, witht along the triple line. Then

t•S R
jun

~k•Tb!d, D 50, ~72a!

p•S n~1,2! f sh
~1,2!1n~3,1! f sh

~3,1!1n~2,3! f sh
~2,3!uCtl1 R

jun
~k•Tb!d, D

50, ~72b!

b•S n~1,2! f sh
~1,2!1n~3,1! f sh

~3,1!1n~2,3! f sh
~2,3!uCtl1 R

jun
~k•Tb!d, D

50, ~72c!

R
jun

~k•Cb!d,50. ~72d!

In this case no torques and no tangential forces act on
triple line.

IV. APPLICATIONS

Obviously the balance equations at the triple line are co
plex and full rigorous solutions to specific problems are
yond the scope of this paper. In this section we wish to sh
representative effects of anisotropy and long range force
triple lines using approximations and simplifications that re
der the equations tractable and provide insights on how n
atic triple lines may differ from isotropic lines. More rigo
ous treatments will have to be performed in the futu
Previous work in the area is found in@12#. In this section we
present an application of the formalism to a large nem
lens~phase 1! bounded by two isotropic phases~phase 2 and
phase 3!. The triple line is a flat large circle. We assume th
the lower phase 3 is very dense so that the nematic–pha
interface is flat. We assume constant and isotropic line e
gies. For a sufficiently large lens we can neglect line cur
ture. The nematic phase is uniaxial, and the scalar order
rameter is unchanged and equal to its equilibrium value:
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Q5s1
eq~nn2I /3! ~73!

where s1
eq minimizes f bh . Thus only orientation contribu-

tions are taken into account. In addition we further simpl
the energies by considering only first order anchoring effe
and use the one-constant approximation in the bulk. The
face energies aref sg

(1,2)5 f sg
(3,1)50,f sh

(2,3)5 f s iso
(2,3) and

f sh
~1,2!5 f s iso

~1,2! 1 f s an
~1,2! , f s an

~1,2!5 z̃ 11
~1,2!~n•j ~1,2!!2, ~74a!

f sh
~3,1!5 f s iso

~3,1! 1 f s an
~3,1! , f s an

~3,1!5 z̃ 11
~3,1!~n•j ~3,1!!2, ~74b!

where all scalar order parameter contributions have been
sorbed into the remaining coefficients. Whenz̃ 11

( i , j ).0 the
surface energy favors tangential director orientation at
~ij ! interface and whenz̃ 11

( i , j ),0 it favors orthogonal~homeo-
tropic! orientation at the interface. The favored orientatio
that minimize surface energy are known as the easy a
Under strong anchoring conditions bulk elastic energy is l
costly and the director orients along the surface easy a
Under weak anchoring conditions surface energy is l
costly and bulk distortions are avoided. For systems boun
by different surfaces, hybrid conditions are possible. T
bulk gradient energy in the one-constant approximationL2
50) used here is

f bg5
K

2
~“n!:~“n!T, ~75!

where K52L1S2 is the Frank constant of elasticity. Th
principal geometric frame is (t,p,b)5(t,n(1,3),j (2,3)). The
previously defined tangent and normal vectors to the in
faces at the triple line aren(2,3)52n(3,1), j (2,3)52j (3,1).
The contact angle between the two nematic interfaces at
triple line is defined by cos§5n(1,2)

•n(3,1)52n(1,2)
•n(2,3),

and sin§5j (1,2)
•n(2,3). For simplicity we assume thatz̃ 11

(1,2)

5 z̃ 11
(3,1).0, and the easy axis at both surfaces is tangen

The two representative cases are~a! weak anchoring and~b!
strong anchoring. Under weak anchoring conditions the r
of interfacial anisotropy on nematic triple lines will be cha
acterized. Under strong anchoring conditions the role of b
long range elasticity on nematic triple lines will be chara
terized.

(a) Weak anchoring. The geometry and director field un
der weak anchoring are shown in Fig. 3. Under weak anch
ing conditions, the characteristic thickness of the nema
region becomes smaller than the extrapolation lengthK/ z̃ 11

( i , j )

and bulk gradients vanish. Thus at finite distances,,,c

5K/( z̃ 11
(1,2) tan§) the director fieldn is constant and given by

n•n(1,2)5n•n(3,1)5cos(§/2). Since the director field is con
stant the bulk equations are satisfied. Since we assume
surface anchoring is negligible when compared to bulk e
ticity, the interfacial equations are satisfied. Thus at the tri
line the junction sum of stresses must vanish. In contras
isotropic triple lines, the forces that act arise from norm
and bending stresses. The anchoring energy contribute
both normal and bending stresses. The stress sum juncti
therefore
6-10
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~76!

FIG. 3. Schematic of geometry
and director field in the vicinity of
a nematic triple line under weak
anchoring conditions. The suppo
bulk phaseR(3) is assume to be
very dense such that the bottom o
the nematic lens is flat. It is as
sumed that the director field be
comes homogeneous as the trip
line is approached. Deviation
from parallel surface orientation
in the nematic phase (R(1)) in-
creases the anchoring energy a
introduces bending stresses. Ben
ing stress forces are normal to th
interface and provide a mecha
nism to balance forces in all direc
tions.
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showing that both tangential and normal forces arise thro
anchoring energy effects.

Thep component of the triple line force balance equati
gives the following generalized Neumann equation:

f s
~2,3!5 f s

~3,1!1 f s iso
~1,2! cos§

1 z̃11H FsinS §

2D G2

~cos§21!2sin§2J , ~77!

showing that the effect of anchoring energy on the con
angle is due to bending and normal stresses. Using thb
component of the force balance equation givesf s iso

(1,2)5 z̃11@1
2cos§2sin(§/2)2# and shows that the upper-directed for
due to f s iso

(1,2) is balanced by the downward anchoring for
z̃11@12cos§2sin(§/2)2#. Combining the horizontal and ver
tical balances yieldsf s iso

(2,3)5 f s iso
(3,1)1 z̃11(6 cos§252cos§2)/4,

showing that in this case anchoring increases the con
angle. Partial wetting occurs whenever

0, f s iso
~3,1! 2 f s iso

~2,3! ,3z̃11, ~78!

showing that the upper threshold is a function of anchor
strength. Finally, the triple line torque balance equation
satisfied by the assumed constant director field.

(b) Strong anchoring. The geometry and director field un
der strong anchoring are shown in Fig. 4. Here we are c
cerned with a nematic wedge with a pure splay distortion
the proximity of the triple line, and wish to establish th
01170
h

ct

ct

g
s

n-
n

range of long range bulk elasticity on the contact ang
Since the triple line coincides with a topological defect
strengths511, the long range effect is contained in th
Peach-Koehler forcef PK acting on the triple line:

FPK5 R
jun

~k•Tb!d,. ~79!

Since we are using a director model in which a topologi
defect is singular we introduce a cutoff radiusr c of the size
of the defect core and define the force by

FPK5 lim
d→r c

E
Dd

~1!
~k•Tb

~1!!d,. ~80!

Likewise, the junction couple integral at the triple line b
comes

R
jun

~k•Cb!d,5 lim
d→r c

E
Dd

~1!
~k•Cb

~1!!d,. ~81!

Using theQ tensor model there is no need to introduce
cutoff since the topological defect becomes nonsingular. A
noncircular cores may introduce second order effects
glected here.

We use a cylindrical coordinate system (r ,w,z) attached
to the triple line, with unit vectors (dr ,dq ,dz) wherew is
measured fromn (3,1). The unit vector along the triple line is
6-11



rt

f
-
a
-
-
y

er
r

ALEJANDRO D. REY PHYSICAL REVIEW E67, 011706 ~2003!
FIG. 4. Schematic of geometry
and director field in the vicinity of
a nematic triple line under strong
anchoring conditions. The suppo
bulk phaseR(3) is assumed to be
very dense such that the bottom o
the nomadic lens is flat. It is as
sumed that the director field has
pure splay as the triple line is ap
proached. The pure splay in
creases the bulk long range energ
and produces a Peach-Koehl
force that acts along the bisecto
and is directed away from the
nematic phase.
e

-
it

r

an
d

th
an
si
re
r
n
m

tact
ver-

tact
the

ge
t52dz , andk5d r . In the cylindrical coordinate system th
director field is planar:n5(cosu,sinu,0). In the bulk the
director angle satisfies“2u50. A radially independent solu
tion is u5q and the corresponding bulk free energy dens
is f g5K/2r 2. The corresponding stress vectork•Tb com-
puted using Eq.~75! is purely radial,k•Tb5K/(2r 2)d r and
the corresponding stress couple vectork•Cb computed using
Eq. ~75! is equal to zero. The junction integrals therefore a

F~PK!5E
§

0

~k•Tb!ur c
r cdq

5
K

2r c
@2sin§n~3,1!1~cos§21!j ~2,3!#, ~82a!

R
jun

~k•Cb!d,50, ~82b!

indicating the presence of horizontal and vertical forces
absence of torques. The forceFPK acts along the bisector an
away from the nematic phase:

FPK5
K

2r c
@2sin§ n~3,1!1~cos§21!j ~2,3!#

52
K

r c
sinS §

2D FcosS §

2Dn~3,1!1sinS §

2D j ~2,3!G ~83!

The presence of a downward vertical force eliminates
inconsistency that arises when using the Young-Neum
contact angle equation and the supporting material is con
ered rigid and inelastic@9#. In that case the vertical forces a
unbalanced. In the present model long range elasticity p
vides a balancing force to capillary forces. The compone
of the force balance equations at the triple line then beco

t•S R
jun

~k•Tb!d, D 50, ~84a!
01170
y

e

d

e
n
d-

o-
ts
e

p•S n~1,2! f s iso
~1,2! 1n~3,1! f s iso

~3,1! 1n~2,3! f s iso
~2,3!

2
K

2r c
@sin§ n~3,1!1~12cos§!j ~2,3!# D50,

~84b!

b•S n~1,2!fs iso
~1,2! 1n~3,1!fs iso

~3,1! 1n~2,3!fs iso
~2,3!

2
K

2r c
@sin§ n~3,1!1~12cos§!j ~2,3!# D50.

~84c!

The horizontal projection leads to

f s iso
~1,2! cos§1 f s iso

~3,1! 2 f s iso
~2,3! 2

K

2r c
sin§50 ~85!

and shows that the long range force increases with con
angle and is directed away from the nematic phase. The
tical projection leads to

f s iso
~1,2! sin§2

K

2r c
~12cos§!50 ~86!

and shows that the long range force increases with con
angle, and how the surface tension force is balanced by
long range Peach-Koehler force@28#. Combination of both
force balances leads to

f s iso
~1,2! 1~ f s iso

~3,1! 2 f s iso
~2,3! ! cos§2

K

2r c
sin§50. ~87!

The partial wetting limits are thus independent of long ran
effects:
6-12
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21,
f s iso

~1,2!

~ f s iso
~3,2! 2 f s iso

~3,1! !
,1, ~88!

and the contact angle for partial wetting is

tan
§

2
2

K/2r c1A~K/2r c!
22@~ f s iso

~1,2! !22~ f s iso
~2,3! 2 f s iso

~3,1! !2#

~ f s iso
~1,2! !2~ f s iso

~2,3! 2 f s iso
~3,1! !

.

~89!

If ( f s iso
(3,1)2 f s iso

(2,3))50 there is partial wetting driven by lon
range elasticity if

21,
2 f s iso

~1,2! r c

K
,1 ~90!

and the contact angle is

sin§5
2 f s iso

~1,2! r c

K
. ~91!

The one-constant approximation in the bulk gradient ene
eliminates a number of effects that may be present when
anchoring conditions are of the hybrid type, involving spl
and bend. In addition, cases with escaped cores or nonc
lar cores may reduce or change the nature of the long ra
forces.

V. CONCLUSIONS

The Landau–de Gennes model for nematic liquid crys
bulk and interfaces has been extended to nematic triple li
involving the intersection of two isotropic and one nema
phase. A complete set of bulk, interface, and triple line fo
and torque balance equations has been formulated usi
systematic approach that takes into account homogen
and long range bulk, surface, and line energies. Force
torque balances at the triple line contain lineal, interfac
and bulk contributions. The interfacial contributions at t
triple line appear as junction sums, while the bulk contrib
tions appear as junction integrals. It is shown that the ju
01170
y
he

u-
ge

l
s,

e
a

us
nd
l,

-
-

tion sums of interfacial stresses and torques and junc
integrals of bulk stresses and torques are the lineal analog
the well-known interface jumps of bulk stresses and torqu
In the absence of gradient energies the equations are sh
to reduce to the classical Neumann force balance at a fl
triple line. The structure of the force balance equations
terms of bulk, surface, and line stresses and torques is sh
to follow from their dimensionality. A Landau–de Genne
free energy density for nematic lines is derived and used
formulate line stress and line torque equations. The natur
line stresses and line torque equations is revealed by ide
fying normal, distortion, and bending components. Norm
line stresses are 1D analogs of pressure in 3D and sur
tension in 2D, line distortion stresses are 1D analogs of
Ericksen stresses in 2D and 3D, and line bending stresse
1D analogs of surface bending stresses in 2D. Similarly,
correspondence between lineal, areal, and bulk torques i
tablished.

Projection of the balance equations along the Fren
Serret triple line frame shows which of the stress and tor
components balance in the principal frame. Applications
the model to the contact angle of a nematic lense betw
two fluids show that interfacial anchoring and bulk gradie
energy modify the classical results. Under weak anchor
the main effect on the triple line is due to interfacial anch
ing ~anisotropy! effects, while under strong anchoring th
main effects on the triple line are due to bulk long ran
contributions. Lack of force balance at a triple line due
lack of long range forces and anisotropic effects is remo
and a consistent formulation is shown to emerge. More
orous applications of the balance equations as well as o
line free energies of nematic contact lines will predict
range of other phenomena not discussed here.
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